978 research outputs found

    Near Horizon Extremal Geometry Perturbations: Dynamical Field Perturbations vs. Parametric Variations

    Get PDF
    In arXiv:1310.3727 we formulated and derived the three universal laws governing Near Horizon Extremal Geometries (NHEG). In this work we focus on the Entropy Perturbation Law (EPL) which, similarly to the first law of black hole thermodynamics, relates perturbations of the charges labeling perturbations around a given NHEG to the corresponding entropy perturbation. We show that field perturbations governed by the linearized equations of motion and symmetry conditions which we carefully specify, satisfy the EPL. We also show that these perturbations are limited to those coming from difference of two NHEG solutions (i.e. variations on the NHEG solution parameter space). Our analysis and discussions shed light on the "no-dynamics" statements of arXiv:0906.2380 and arXiv:0906.2376.Comment: 38 page

    Crimean-congo hemorrhagic fever: Case series from a medical center in golestan province, Northeast of Iran (2004-2006)

    Get PDF
    Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed lethal disease, worldwide. Humans are usually infected with CCHF virus through a tick bite or close contact with viral contaminated tissues or with blood of domestic animals or of infected patients. The present study reports six cases of CCHF, who were in contact with both infected tissues and blood from sheep. In some regions like Golestan province (North of Iran), clinician suspicion may have an important role in early diagnosis and treatment of the disease. Conservative therapy (intensive monitoring) and prescription of antiviral medication (Ribavirin) accompanied with corticosteroids, was useful at the early stage of CCHF

    Wiggling Throat of Extremal Black Holes

    Get PDF
    We construct the classical phase space of geometries in the near-horizon region of vacuum extremal black holes as announced in [arXiv:1503.07861]. Motivated by the uniqueness theorems for such solutions and for perturbations around them, we build a family of metrics depending upon a single periodic function defined on the torus spanned by the U(1)U(1) isometry directions. We show that this set of metrics is equipped with a consistent symplectic structure and hence defines a phase space. The phase space forms a representation of an infinite dimensional algebra of so-called symplectic symmetries. The symmetry algebra is an extension of the Virasoro algebra whose central extension is the black hole entropy. We motivate the choice of diffeomorphisms leading to the phase space and explicitly derive the symplectic structure, the algebra of symplectic symmetries and the corresponding conserved charges. We also discuss a formulation of these charges with a Liouville type stress-tensor on the torus defined by the U(1)U(1) isometries and outline possible future directions.Comment: 56 pages, 3 figure

    Extremal Rotating Black Holes in the Near-Horizon Limit: Phase Space and Symmetry Algebra

    Get PDF
    We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to dd dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R)×U(1)d−3SL(2,\mathbb R)\times U(1)^{d-3} isometries which has vanishing SL(2,R)SL(2,\mathbb R) and constant U(1)U(1) charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. This phase space and in particular its symmetries might serve as a basis for a semiclassical description of extremal rotating black hole microstates.Comment: Published in PLB, 5 page

    II in generalized supergravity

    Full text link
    We showed in previous work that for homogeneous Yang-Baxter (YB) deformations of AdS5×_5\timesS5^5, the open string metric and coupling, and as a result the closed string density e−2Φge^{-2 \Phi} \sqrt{g}, remain undeformed. In this work, in addition to extending these results to the deformation associated with the modified CYBE, or η\eta-deformation, we identify the Page forms as the open string counterpart for RR fields and demonstrate case by case that the non-zero Page forms remain invariant under YB deformations. We give a physical meaning to the Killing vector II of generalized supergravity and show for all YB deformations: 1) II appears as a current for center of mass motion on the worldvolume of a D-branes probing the background, 2) II is equal to the divergence of the noncommutativity parameter, 3) II exhibits "holographic" behavior, where the radial component of II vanishes at the AdS boundary, and 4) in pure spinor formalism II is related to a certain state in the BRST cohomology.Comment: 11 pages, 2 column; v2 references updated; v3 to appear in EPJ

    p-p' System with B-field, Branes at Angles and Noncommutative Geometry

    Full text link
    We study the generic p−p′p-p^\prime system in the presence of constant NS 2-form BijB_{ij} field. We derive properties concerning with the noncommutativity of D-brane worldvolume, the Green functions and the spectrum of this system. In the zero slope limit, a large number of light states appear as the lowest excitations in appropriate cases. We are able to relate the energies of the lowest states after the GSO projection with the configurations of branes at angles. Through analytic continuation, the system is compared with the branes with relative motion.Comment: 21 pages, Latex. References regarding to section 3 and 4 added. Typos correcte

    Extensions of AdS_5 x S^5 and the Plane-wave Superalgebras and Their Realization in the Tiny Graviton Matrix Theory

    Full text link
    In this paper we consider all consistent extensions of the AdS_5 x S^5 superalgebra, psu(2,2|4), to incorporate brane charges by introducing both bosonic and fermionic (non)central extensions. We study the Inonu-Wigner contraction of the extended psu(2,2|4) under the Penrose limit to obtain the most general consistent extension of the plane-wave superalgebra and compare these extensions with the possible BPS (flat or spherical) brane configurations in the plane-wave background. We give an explicit realization of some of these extensions in terms of the Tiny Graviton Matrix Theory (TGMT)[hep-th/0406214] which is the 0+1 dimensional gauge theory conjectured to describe the DLCQ of strings on the AdS_5 x S^5 and/or the plane-wave background.Comment: 27 pages, LaTe
    • …
    corecore